ancoPLUS® - Durchstanzbewehrung

Durchstanztheorie nach Norm SIA 262 Art. 4.3.6 SIA 262

ancotech

Anwendungshilfe zur Bemessungssoftware

Gratis Download unter: www.ancotech.ch

ANCOTECH AG, Produktion und Administration in Dielsdorf/Schweiz

ANCOTECH SA, production et administration à Dielsdorf/Suisse

Es ist unsere Philosophie, mit einer schlanken Firmenstruktur und gut ausgebildeten Mitarbeitern, technisch ausgereifte und wirtschaftlich interessante Lösungen im Bereich 'Spezialbewehrungen' und 'Edelstahlteile' zu erarbeiten. Wo erforderlich, werden eigene Systeme entwickelt. Unsere Innovationen im Ingenieurbau sind richtungsweisend.

Über 25 Jahre Erfahrung ist eine gute Grundlage für Qualität und Kontinuität.

ANCOTECH AG ein starker Name, eine starke Firma.

Il est dans notre philosophie de travailler avec une structure d'entreprise réduite et un personnel compétent. Nous nous efforçons de trouver des solutions économiques et techniquement parfaites pour résoudre les problèmes dans le domaine des armatures spéciales et des éléments en acier inoxydable. En cas de nécessité, nous développons de nouveaux systèmes.

Plus de 25 ans d'expérience est la garantie d'une qualité et d'une continuité.

ANCOTECH SA

Un nom solide, une entreprise solide.

Einführung / Durchstanztheorie

Die neue Betonnorm SIA 262

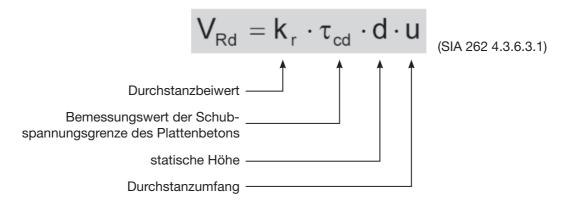
- Auf den 1. Juli 2004 wurde die Norm SIA 162 (89) durch die neue SIA 262 ersetzt.
- Sie ist Europakompatibel (entspricht der Terminologie des EC 02)

Die neue Terminologie

	SIA 162	SIA 262
Betonfestigkeitsklassen	Beton B35/25	Beton C25/30
Bemmessungswert der Betondruckfeszigkeit	f_c	f_{cd}
Bemmessungswert der Schubspannungsgrenze	t _c	$t_{\sf cd}$
mittlere statische Höhe	d_{m}	d
Bemmessungswert der Fliessgrenze von Betonstahl	f _y	f_{sd}
Bemmessungswert des Durchstanzwiderstandes	V _R	V_Rd
Bemmessungswert max. des Durchstanzwiderstandes	V_{Rmax}	V _{Rdmax} (nur ANCOTECH)

Neuerungen im Durchstanzen (SIA262 4.3.6)

- Die neue Norm erlaubt, durch die Einführung zusätzlicher Variablen, die Bemessung noch näher der Realität anzupassen.
- Dieses neue Bemessungskonzept erlaubt grössere Durchstanzwiderstände der Decken.


Die Hauptfaktoren, zu erhöhten Tragwiderständen sind:

Beiwert zur Bestimmung des Durchstanzwiderstandes in Platten \mathbf{k}_{r}

max. Spannweite zwischen den Stützen Biegebewehrungsgehalt der Decke

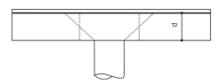
Erklärung der Durchstanztheorie (SIA262 4.3.6)

Das Resultat der Durchstanzbemessung ist eine Funktion von:

Durchstanztheorie

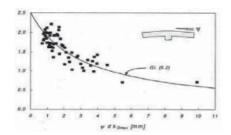
Der Durchstanzumfang ist eine Funktion von:

$$V_{Rd} = k_r \cdot \tau_{cd} \cdot d \cdot u$$


Stützentyp

Stützenlage

• der mittleren statischen Höhe



Der Bemessungswert der Schubspannung ist eine Funktion der Betonqualität

$$V_{Rd} = k_r \cdot \tau_{cd} \cdot d \cdot u$$

Beton Typ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
f _{cd} [N/mm2]	8.0	10.5	13.5	16.5	20.0	22.0	24.0	26.0	28.0
τ _{cd} [N/mm2]	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.4

$$V_{Rd} = k_r \cdot \tau_{cd} \cdot d \cdot u$$

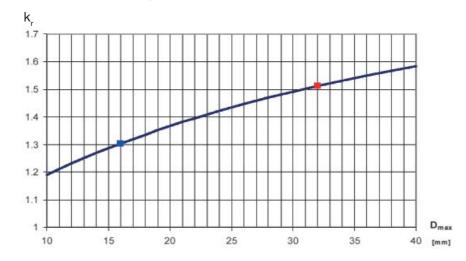
Der Beiwert $\mathbf{k}_{\mathbf{r}}$ ist aus unzähligen Versuchen und auf Grund grosser Erfahrung mit dem Durchstanzphänomen ermittelt worden.

Durchstanzkoeffizienten

Der Durchstanzbeiwert k,

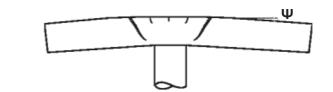
Entstehung des Beiwertes k,

$$k_{r} = \frac{1}{0.45 + 0.135 \cdot \psi \cdot d(K_{Dmax})}$$


Der Faktor \mathbf{K}_{Dmax} berücksichtigt den Einfluss des Grösstkorndurchmessers. (\mathbf{D}_{max} = Grösstkorndurchmesser)

Bei max. Korndurchmesser = 32 mm, Faktor

$$\mathbf{K}_{\text{Dmax}} = 1$$


Einfluss des Betonkorn - Grösstdurchmessers $(\mathbf{D}_{\max} = \text{grösst} - \text{Korndurchmesser})$

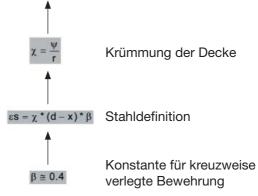
Entstehung des Beiwertes k_r

Die Deckenrotation Ψ ist eine Funktion von:

- der statischen Höhe
- der Spannweite
- der Biegebewehrung über der Stütze
- der Auswirkung von Eigengewicht und Auflast
- der Betonqualität

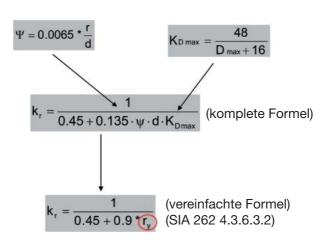
Durchstanzkoeffizienten

Der Durchstanzbeiwert k


Entstehung des Beiwertes k,

 $k_r = \frac{1}{0.45 + 0.135 \, \psi \, d \cdot K_{Dmax}}$

Die Deckenrotation Ψ wird berechnet:

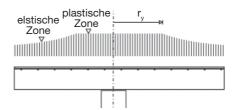

 $y = r * \chi = \frac{r * \epsilon_s}{(d - x) * \beta} \cong \frac{r * f_{sd}}{0.85 * d * \beta * E_s} \cong 0.0065 * \frac{r}{d}$

Diese Formel kommt von:

Entstehung des Beiwertes k,

Vereinfachung:

Radius der plastischen Zone r_v


 $\mathbf{r}_{_{\mathbf{y}}}$ ist der Radius der plastischen Zone um eine Stütze

Der Radius $\mathbf{r}_{\mathbf{y}}$ ist eine Funktion von:

- der max. Spannweite
- des Vergleichsmoments
- ullet der Biegefestigkeit $oldsymbol{m}_{Rd}$ der Decke über der Stütze

$$k_r = \frac{1}{0.45 + 0.9 \, \text{\reft}_r}$$

$$ry = 0.15 * L_{max} * (\frac{m_{od}}{m_{Rd}})^{\frac{3}{2}}$$

Plastischer Teil

Der Durchstanzbeiwert k

Purchstanzbeiwert k_r $k_r = \frac{1}{0.45 + 0.9} \frac{1}{\Gamma_V}$ Radius der plastischen Zone r_v $ry = 0.15 * L_{max} * (\frac{m_{od}}{m_{Rd}})^{\frac{3}{2}} \qquad (SIA 262 4.3.6.3.1)$ max. Spannweite zwischen den Stützen $m_{od} = \frac{V_d}{8} \qquad Innenstütze (in beide Richtungen)$ $m_{od} = \frac{V_d}{4} \qquad Randstütze (paralell zum Rand)$ $m_{od} = \frac{V_d}{8} \qquad Randstütze (rechtwinklig zum Rand)$ $m_{od} = \frac{V_d}{8} \qquad Eckstütze (in beide Richtungen)$ $m_{od} = \frac{V_d}{8} \qquad Wandende und einspringende Ecken (in beide Richtungen)$

Zusammenfassung

Durchstanzwiderstand **ohne** Durchstanzbewehrung:

$$V_{Rd} = k_r (V_d) * \tau_{cd} * d * u$$
 (SIA 262 4. 3. 6. 3. 1)

Durchstanzwiderstand mit Durchstanzbewehrung:

$$V_{Rd,max} = 2^* k_r (V_d) * \tau_{cd} * d * u$$
 (SIA 262 4. 3. 6. 5. 3)

Durchstanzwiderstand mit Durchstanzbewehrung:

$$V_{Rd,max} = 3* k_r (V_d) * \tau_{cd} * d * u$$
 (SIA 262 Abschnitt 03 / Gutachten EPFL, A. Muttoni)

Durchstanzbeiwert:

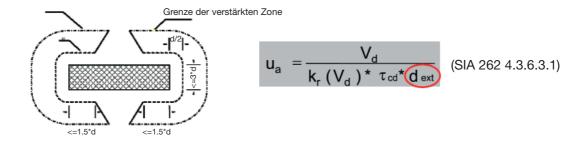
$$k_r = \frac{1}{0.45 + 0.9 * r_y}$$
(SIA 262 4. 3. 6. 3. 2)

Radius der plastischen Zone max. (r_{yy}, r_{yx}) :

$$r_y = 0.15 * L_{max} * (\frac{m_{od}}{m_{Rd}})^{\frac{3}{2}}$$

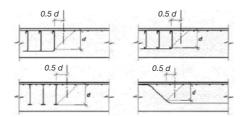
(SIA 262 4. 3. 6. 3. 2)

Widerstand mit Bewehrung

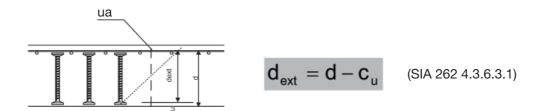

Durchstanzwiderstand mit Durchstanzbewehrung

Sind die nachfolgenden Forderungen eingehalten, kann das Durchstanzversagen mit einer Durchstanzbewehrung verhindert werden.

$$k_{r(Vd)} \cdot \tau_{cd} \cdot d \cdot u \leq V_d \leq 3 \cdot k_{r(Vd)} \cdot \tau_{cd} \cdot d \cdot u$$


Bei einer Verstärkung mit Durchstanzbewehrung muss die massgebende Lasteinleitungszone bestimmt werden.

Die äussere Begrenzung der Lasteinleitungszone ist der Rundschnitt ua.



Statische Höhe

Der äussere Rundschnitt ua wird mit Funktion vom dext. berechnet. Die statische Höhe **d** wird durch das gewählte Durchstanzsystem beeinflusst.

Die massgebende Höhe für ANCOPLUS ist:

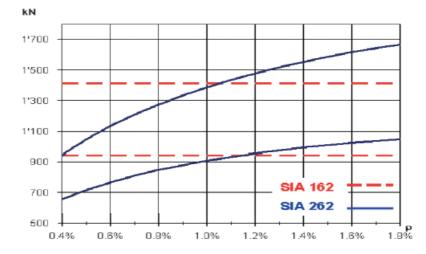
Ankerbemessung


Dimensionierung der ANCOPLUS Anker

Der Ankerdurchmesser wird beeinflusst durch den Ankerabstand « x » und die Anzahl ANCOPLUS pro « n_{as} ». (n_{as} = ANCOPLUS-Reihe).

Tabelle für die ancoPLUS-Bemessung											
ancoPLUS Typ	Ø	Anker Querschnitt	Stahl- Traglast / spannung Anker		Distanz zw. den Ankern	Traglast / ANCOPLUS					
Typen	d _A	A _{sw}	f _{sd}	N _{Rd}	x	N _{Rd}					
	mm	mm²	N/mm²	kN		kN					
X	10	78.5	435	34.2	0.60*d	34.2					
Α	12	113.1	435	49.2	0.60*d	49.2					
В	14	153.9	435	67.0	0.60*d	67.0					
С	16	201.1	435	87.5	0.60*d	87.5					
G	20	314.2	435	136.7	0.60*d	136.7					
Н	20	314.2	435	136.7	0.30*d	273.3					
J	22	380.1	435	165.4	0.60*d	165.4					
K	22	380.1	435	165.4	0.30*d	330.7					
0	26	530.9	435	231.0	0.60*d	231.0					
Р	26	530.9	435	231.0	0.30*d	461.9					
Т	30	706.9	435	307.5	0.60*d	307.5					
U	30	706.9	435	307.5	0.30*d	615.0					

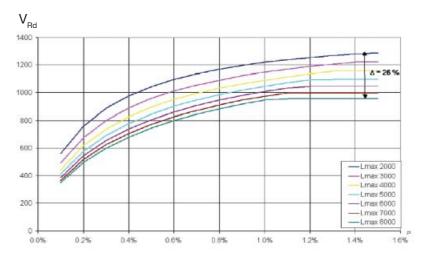
$$N_{d,An\,ker} = \frac{V_d \cdot x}{n_{as} \cdot z \cdot \cot \alpha}$$


Die folgende Bedingung muss eingehalten werden:

Vergleichsgrafiken

Vergleichsgrafik 1

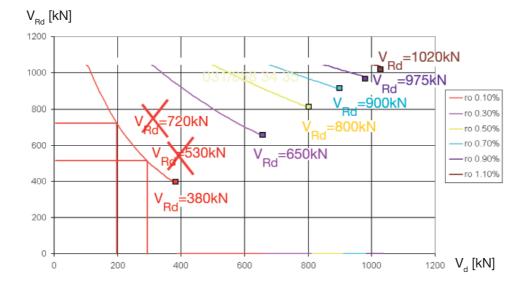
Durchstanzwiderstand SIA 162 - SIA 262 Mit Einfluss der Biegebewehrung



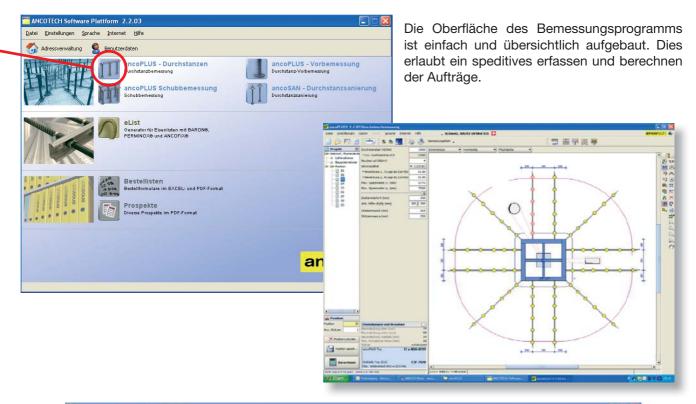
Basis: Vorgegebene Deckenstärke und Spannweite

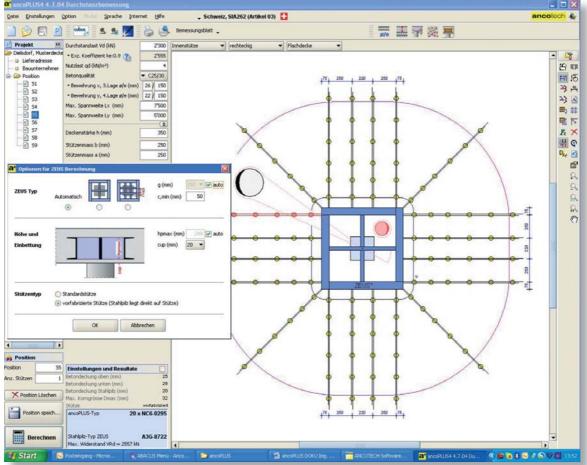
Vergleichsgrafiken

Vergleichsgrafik 2


Einfluss der Spannweite auf den Durchstanzwiderstand

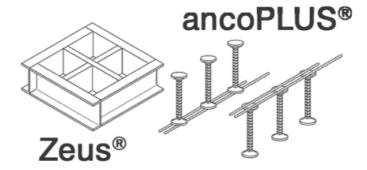
Basis: Vorgegebene Deckenstärke und Spannweite


Durchstanzgrenzwerte bei unterschiedlichem Bewehrungsgehalt



Durchstanzbemessungsprogramms ancoPLUS

Bemessungsprogramm nach Norm SIA 262



Beispiel eines kompletten Projekts aus dem Durchstanzbemessungsprogramms ANCOPLUS 4.7.01

ancoPLUS - Durchstanzbemessung

Programm: ancoPLUS4, Version: 4.7.04 23.04.2010

Das Erscheinungsbild der neusten Version kann sich von der hier abgebildeten Ansicht unterscheiden!

Aktualisieren Sie Ihre Software unter:

Aktualisieren Sie Ihre Software unter:

Projekt	Dielsdorf, Musterdecke	
Bauteil	Durchstanzbewehrung De EG 090127	

Von: Ancotech AG
Marco Moritz
Industriestrasse 3
8155 Dielsdorf

Web: www.ancotech.ch

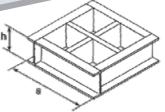
An: ANCOTECH AG
Herr Marco Moritz
Industriestrasse 3
8157 Dielsdorf

Fax: 044 / 854 72 28

ANCOTECH AG Industriestrasse 3 CH-8157 Dielsdorf

Tel: 044 854 72 22 Fax: 044 854 72 29 E-Mail: info@ancotech.ch ANCOTECH SA Rue de Vevey 218 CH-1630 Bulle

Tél: 026 919 87 77 Fax: 026 919 87 79 E-Mail: info@ancotech.ch


FAX-Bestellblatt


+41 044 854 72 29

ancoPLUS®-Durchstanzbewehrung

Projekt	Dielsdorf, Musterdecke	Dielsdorf, Musterdecke				
Bauteil	Durchstanzbewehrung De EG 090127					
Bestelldatum		Liefertermin				
Ing.Büro	ANCOTECH AG	Liste Nr.				
	Industriestrasse 3					
	8157 Dielsdorf	Plan Nr.				
Bauuntemehme cheinungsbild C	der neusten Version kann sich der neusten Version kann sich eten Ansicht unterscheiden! Sie Ihre Software unter:	Lieferadresse				

Aktualisieren Sie Ihre Softwal

Position	Bezeichnung	Тур	Masse h/s	Anzahl	Bemerkungen	Farbcode
			(mm)	(Stk)		
	Stahlpilz ZEUS	A3G-8722	220 / 870	1		
	Stahlpilz ZEUS	B3N-6024	240 / 600	4		
	Stahlpilz ZEUS	C3F-6020	200 / 600	1		
	Stahlpilz ZEUS	C3F-6620	200 / 660	4		
	Stahlpilz ZEUS	C3F-7820	200 / 780	2		
	ancoPLUS	NB4-0295	295	24		blau
	ancoPLUS	NC2-0295	295	14		gelb
	ancoPLUS	NC6-0295	295	20		grün
	ancoPLUS	NG5-0295	295	60		
	ancoPLUS	NG6-0295	295	72		rot
	ancoPLUS	NJ3-0295	295	4		weiss
	ancoPLUS	NJ5-0295	295	5		orange
	Distanzhalter	DUO 25	25	398		

4.7.04 Seite1/1

Die oben aufgeführten Werte sind auf Richtigkeit und Pausibilität zu prüfen

Web: www.ancotech.ch

ANCOTECH AG Industriestrasse 3 CH-8157 Dielsdorf

Tel: 044 854 72 22 Fax: 044 854 72 29 E-Mail: info@ancotech.ch

ANCOTECH SA Rue de Vevey 218 CH-1630 Bulle

Tél: 026 919 87 77 Fax: 026 919 87 79 E-Mail: info@ancotech.ch

Datenzusammenstellung

ancoPLUS®-Durchstanzbewehrung

Ing.Büro	ANCOTECH AG, 8157 Dielsdorf		
Sachbearbeiter	Herr Marco Moritz		
Projekt	Dielsdorf, Musterdecke	Datum:	23.04.2010
Bauteil	Durchstanzbewehrung De EG 090127	Version:	4.6.37

Berechnungsgrundlage: SIA262 (CH) - Schweiz (d)

		Stützen					Decke			Statische Werte			anco	PLUS/ZEUS
		Aussp. a / b		sp. a/b	rd / rb	h	d		Ly	ui-∆ui	ui-∆ui Vd Bewehr. x		pro S	Stütze
Pos.	Anz	Lage)	(mm)	(mm)	(mm)	(mm)	Beton	(mm)	(mm)	(kN)	Bewehr. y	Anz.	Тур
S1	4	11177		250/300		350	300	C25/30	6000	3280	2444²	1.20%	1 x	B3N-6024
				(vorfab.)					6000			1.20%	12 x	NG5-0295
S2	4	-		220/460		350	303	C25/30	7550	3529	2111²	22/150 mm	1 x	C3F-6620
				(vorfab.)					7800			22/150 mm	12 x	NG6-0295
S3	2	HC'Y	х	250/250		350	300	C25/30	5775	3585	2000²	18.00 cm²/m	1 x	C3F-7820
				(vorfab.)					7000			18.00 cm ² /m	12 x	NG6-0295
S4	1	11177		200/200		350	303	C25/30	7500	3289	2166²	22/100 mm	1 x	C3F-6020
				(vorfab.)					5000			22/150 mm	12 x	NG5-0295
S5	1	m''Y	х	250/250		350	302	C25/30	7500	4092	2555²	26/150 mm	1 x	A3G-8722
				(vorfab.)					5000			22/150 mm	20 x	NC6-0295
S6	3]		1000/200	100	350	300	C25/30	5000	1971	800	0.44%	8 x	NB4-0295
									5000			0.25%		
S7	1	1		600/600		350	300	C25/30	6000	1436	1290	0.80%	5 x	NJ5-0295
									5000			0.80%		
S8	2	mmA.		150/450		350	300	C25/30	5000	1521	1000	0.80%	7 x	NC2-0295
									7000			0.80%		
S9	1	10		200	150	350	300	C25/30	5000	1285	920	1.00%	4 x	NJ3-0295
							la .		5000			1.00%		
s Erscheinungsbild der neusten Version kann sich s Erscheinungsbild der neusten Version kann sich unterscheiden! s Erscheinungsbild der neusten Ansicht unterscheiden! Aktualisieren Sie Ihre Software unter: Aktualisieren Sie Ihre Software unter: Www.ancotech.ch														

²) exzentr. Last *) konstruktive ancoPLUS

Seite1/1

Die oben aufgeführten Werte sind auf Richtigkeit und Pausibilität zu prüfen

Web: www.ancotech.ch

ANCOTECH AG Industriestrasse 3 CH-8157 Dielsdorf

Tel: 044 854 72 22 Fax: 044 854 72 29 E-Mail: info@ancotech.ch ANCOTECH SA Rue de Vevey 218 CH-1630 Bulle

Tél: 026 919 87 77
Fax: 026 919 87 79
E-Mail: info@ancotech.ch

Bemessungsblatt

ancoPLUS®-Durchstanzbewehrung

Ing.Büro	ANCOTECH AG, 8157 Dielsdorf	Position	S5
Sachbearbeiter	Herr Marco Moritz	Anzahl	1
Projekt	Dielsdorf, Musterdecke	Datum:	23.04.2010
Bauteil	Durchstanzbewehrung De EG 090127	Version:	4.6.37

Berechnungsgrundlage: Schweiz, SIA262 (Optimiert gemäss Ausnahmeartikel 03) - (d)

Eingabewerte

Durchstanzlast:	Vd	=	2300 kN
Exzentrische Last:	Vd exc	=	2555 kN (Ke = 0.90)
Bemessungswert der Nutzlast (im Stützenbereich):	qd	=	4 kN/m²
Deckenstärke:	h	=	350 mm
mittlere reduzierte stat. Höhe	dred	=	282 mm
Betondeckung oben / unten:	co / cu	=	25 / 25 mm
Stützenabmessung: (vorfabriziert, mit erhöhter Festigkeit min C65/80)	а	=	250 mm
Stützenabmessung: (vorfabriziert, mit erhöhter Festigkeit min C65/80)	b	=	250 mm
Max. Spannweite:	Lx/Ly	=	7500 / 5000 mm

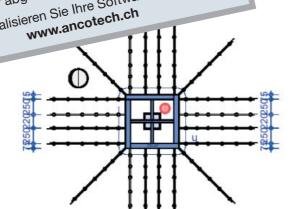
Materialkennwerte

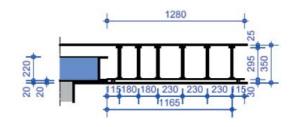
Betonqualität (mit Dmax = 32 mm):		C:	25/30
Beton Schubspannungsgrenze:	τcd	=	1.00 N/mm ²
Rewehrung x 3 Lage	øx/ex	=	26/150 mm (c

26/150 mm (ρx = 1.22 %) = 22/150 mm (ρy = 0.81 %) Bewehrung y, 4.Lage øy/ey

Zwischenwerte

Beton Durchstanzwerte VRd / VRdmax (mit 3.0*Kr)	936 kN / 2801 kN						
Länge des Rundschnitts (u-∆u):	u	=	4092 mm				
Länge des Rundschnitts (ua-∆ua):	ua	=	11214 mm				
Erforderlicher Abstand bis zum letzten Anker:	L1	=	1160 mm	(theoretisch)			
Beiwert zur Bestimmung des Durchstanzwiderstandes von Platten:	Kr	=	0.81	(max.Koef. = 3.0*Kr)			
Radius des plastischen Bereiches:	ry	=	0.88 m				


Grenzwerte


Max. Durchstanzlast MIT Stahlpilz, ohne ancoPLUS:	VRd =	1475 kN	
Max. Durchstanzlast MIT Durchstanzsystem und diesem Stahlpilz:	VRdmax =	2558 kN	
Max. Durchstanzlast des gewählten Durchstanzelementes:	VRd =	2557 kN	(Kr eff. = 2.7)

ncoPLUS 20 x NC6-0295 (1) statisch ahlpilz ZEUS 1 x A3G-8722 fix

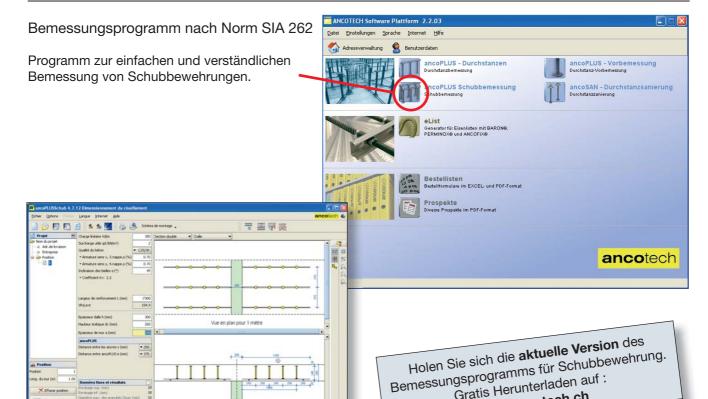
Das Erscheinungsbild der neusten Version kann sich version kann sion Von der hier abgebildeten Ansicht unterscheiden! Aktualisieren Sie Ihre Software unter:

ersten Anker kann von 115 mm bis zu 135 mm variieren!

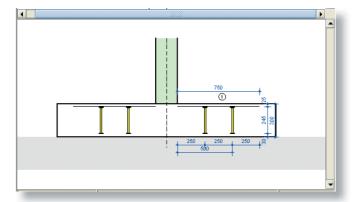
Die oben aufgeführten Werte sind auf Richtigkeit und Pausibilität zu prüfen

cotec

Web: www.ancotech.ch

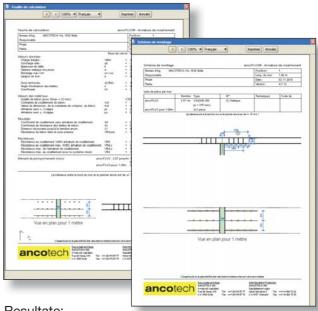

ANCOTECH AG Industriestrasse 3 CH-8157 Dielsdorf

044 854 72 22 Tel: Fax: 044 854 72 29 E-Mail: info@ancotech.ch


ANCOTECH SA Rue de Vevey 218 **CH-1630 Bulle**

Tél: 026 919 87 77 Fax: 026 919 87 79 E-Mail: info@ancotech.ch

Schubbemessungsprogramms ancoPLUS



Übersichtliche Benutzeroberfläche zur Eingabe der erforderlichen Parameter.

Bemessung für:

- Decken
- Bodenplatten
- Einzelfundamenten

Gratis Herunterladen auf : www.ancotech.ch

Resultate:

Bemessungsblatt, Montageschema und Bestellblatt mit einem Klick!

Mai 2010 / mo

Web: www.ancotech.ch

ANCOTECH AG Industriestrasse 3 CH-8157 Dielsdorf

Tel: 044 854 72 22 Fax: 044 854 72 29 E-Mail: info@ancotech.ch **ANCOTECH SA** Rue de Vevey 218 **CH-1630 Bulle**

Tél: 026 919 87 77 Fax: 026 919 87 79 E-Mail: info@ancotech.ch